

Chemistry

• **Definition**: The science of studying matter and the changes it undergoes.

Branches:

• Analytical Chemistry

Concerned with studying the types of materials and their compositions.

Examples: Food analysis and quality control.

• Atomic Chemistry

Concerned with studying the theories of matter's structure.

Examples: Bonds, orbitals, and electronic configurations.

Biochemistry

Concerned with studying matter and biological processes in living organisms.

Examples: Metabolism.

• Environmental Chemistry

Concerned with studying matter and its interactions with the environment.

Examples: Environmental pollution and chemical treatments.

The Ozone Layer

- Function: Absorbs most of the harmful ultraviolet rays before they reach the Earth.
- Ozone Gas: Found in the stratosphere layer and consists of molecules containing three oxygen atoms O_3 .
- Ozone Hole: A thinning of the ozone layer above the Antarctic region.
 - The cause: Chlorofluorocarbons (CFCs) used in refrigeration, which are among the most harmful substances to the ozone layer.
 - Consequences: It contributes significantly to climate change.

Notes:

- The scientist Dobson developed a method for measuring the ozone concentration in the atmosphere.
- The natural level of ozone gas equals 300 Dobson units (DU).

Types of Studies and Scientific Research

• Theoretical Research:

The pursuit of knowledge for its own sake.

Example: Studying chlorofluorocarbon (CFC) compounds and their reactions with ozone gas without direct environmental evidence.

Applied Research:

Research conducted to solve a specific problem.

Example: Measuring the amount of CFCs in the atmosphere and assessing their potential responsibility for ozone depletion.

Students in the Laboratory

• One of the safety rules in the laboratory:

Wearing safety glasses, a lab coat, and gloves is mandatory, while wearing contact lenses is prohibited.

Matter

- Definition: Everything that has mass and occupies space.
- Mass: A measure of the quantity of matter.
- **Note**: Mass is a constant value in any location, whereas weight varies from one place to another depending on the gravitational force.

States of Matter

1. Solid

- Has a definite shape and volume.
- Its particles are tightly packed together.
- Example: Sand.

2. Liquid

- Has the ability to flow, with a definite volume.
- Takes the shape of the container it is placed in.
- Example: Water.

3. **Gas**

- Takes the shape and volume of the container it is placed in.
- Its particles are spread apart and can be compressed easily.
- Example: Air.

Note:

Researchers have identified another state of matter called **plasma**, which can be described as ionized gas.

Symbols Used in Chemical Equations:

- g: Gaseous state.
- *l*: Pure liquid state.
- s: Solid state.
- aq: Aqueous solution (dissolved in water).

Physical and Chemical Properties of Matter

• Physical Properties of Matter:

These properties can be observed or measured without altering the substance's composition.

Table 9.1	Symbols Used in Equations
Symbol	Purpose
+	separates two or more reactants or products
\rightarrow	separates reactants from products
=	separates reactants from products and indicates a reversible reaction
(s)	identifies a solid state
(I)	identifies a liquid state
(g)	identifies a gaseous state
(aq)	identifies a water solution

Types of Physical Properties of Matter

- 1. Intensive Properties (Qualitative)
 - These do not depend on the amount of matter.
 - Examples: Taste, smell, density, color, and electrical conductivity.

2. Extensive Properties (Quantitative)

- These depend on the amount of matter.
- Examples: Mass, length, speed, volume, and concentration.

Chemical Properties of Matter

- **Definition**: The ability of a substance to combine with other substances or transform into a different substance.
 - *Examples*: The formation of rust on iron, the decomposition of sugar into carbon and water vapor, and the burning of wood.
- Note: The inability of a substance to change into another substance is also considered a chemical property.
 - Example: Table salt does not react with pure water.

Physical Changes of Matter

- **Definition**: Changes in the physical properties of matter without altering its chemical composition.
 - Examples: Breaking a glass sheet, cutting paper, grinding diamonds, and changes in state.
- Change of State: The transformation of matter from one state to another.
 - This depends on the temperature, pressure, and surrounding environmental conditions.

Types of Physical Changes

Energy Absorption Processes (Endothermic):

- Melting: The process of a solid turning into a liquid.
- Evaporation: The process of a liquid transforming into a gas or vapor.
- **Sublimation**: The direct transformation of a solid into a gas without passing through the liquid state.

Example: The direct transformation of solid naphthalene into a gas.

Energy Release Processes (Exothermic):

- Freezing: The process of a liquid turning into a solid.
- Condensation: The process of a gas turning into a liquid.
- **Deposition**: The direct transformation of a gas into a solid without passing through the liquid state.

Example:

Water vapor turning into ice crystals (frost formation).

Note

When water freezes, the particles of ice move further apart than they are in liquid water, which increases its volume.

Examples of phenomena resulting from condensation:

- Dew
- Clouds
- Fog
- Rain
- Melting Point: The specific temperature at which a solid changes into a liquid.
- **Boiling Point**: The specific temperature at which the vapor pressure of a liquid equals the external atmospheric pressure.

Chemical Changes of Matter

- **Definition**: Changes in the composition and properties of matter that result in the formation of new substances.
- Examples:
 - Combustion
 - Bread fermentation
 - Decomposition

Element and Compound

• Element:

A pure chemical substance that cannot be broken down into simpler substances by physical or chemical means.

- Examples: Sodium (Na), Calcium (Ca), Chromium (Cr).
- Note: Some elements exist as diatomic molecules.
 - Examples:
 - Hydrogen (H_2)
 - Nitrogen (N_2)
 - Oxygen (O_2)
 - Fluorine (F_2)
 - Chlorine (Cl_2)
 - Bromine (Br_2)
 - Iodine (I_2)

Compound

• Definition:

A substance formed by the chemical combination of two or more different elements in fixed proportions. Compounds can be broken down into simpler substances by chemical methods.

- Examples:
 - Table salt (NaCl)
 - Water (H_2O)
 - Iron oxide (rust) (Fe_2O_3)

• Note:

The properties of compounds differ from the properties of the individual elements that compose them.

Laws of Chemical Composition

1. Law of Definite Proportions:

A compound always consists of the same elements in fixed proportions by mass, regardless of the source or quantity.

2. Law of Multiple Proportions:

When two elements combine to form more than one compound, the ratios of the masses of one element that combine with a fixed mass of the other element are in simple whole numbers.

• Example:

The ratio of oxygen to hydrogen in water (H_2O) is 2:1, while in hydrogen peroxide (H_2O_2) it is 1:1.

Chemical Reactions

• Definition:

A process in which the arrangement of atoms in one or more substances is reorganized to form new and different substances.

• Types of Chemical Reactions:

- Combination (Synthesis)
- Combustion
- Decomposition
- Single Replacement
- Double Replacement

Combination Reaction (Synthesis)

• Description:

A chemical reaction in which two or more substances combine to form a single product.

• General Equation:

$$A+B o AB$$

• Examples:

1.
$$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$$

2.
$$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$$

SAAT Tahsiti Center

Combustion Reaction

• Description:

A reaction in which a substance reacts with oxygen (O_2) , releasing energy in the form of heat and light.

• General Equation:

$$A + O_2 \rightarrow AO$$

• Example:

Combustion of methane gas (CH_4):

$$CH_4(g)+2O_2(g)
ightarrow CO_2(g)+2H_2O(g)$$

Decomposition Reaction

• Description:

A chemical reaction in which a single compound breaks down into two or more simpler substances.

• General Equation:

$$AB o A + B$$

• Example:

$$2KBr(s)
ightarrow 2K(s) + Br_2(l)$$

Single Replacement Reaction

• Description:

A reaction in which one element (the more reactive) replaces another element (the less reactive) in a compound.

• General Equation:

$$A + BX \rightarrow AX + B$$

SART Taksiti Center

• Examples:

1. Metal replacing hydrogen in water:

$$2Li(s) + 2H_2O(l) \rightarrow 2LiOH(aq) + H_2(g)$$

2. Metal replacing another metal:

A more reactive metal can replace a less reactive metal in a solution based on the reactivity series.

• Example of replacement:

$$Zn(s) + NiCl_2(aq)
ightarrow ZnCl_2(aq) + Ni(s)$$

ullet Example of no reaction (indicated as NR):

$$Ni(s) + ZnCl_2(aq)
ightarrow {
m NR}$$

(This shows that less reactive metals cannot replace more reactive metals.)

3. Halogen replacing another halogen:

A more reactive halogen replaces a less reactive halogen.

• Example of replacement:

$$F_2(g) + 2NaBr(aq)
ightarrow 2NaF(aq) + Br_2(l)$$

• Example of no reaction (NR):

$$Br_2(l) + 2NaF(aq)
ightarrow {
m NR}$$

(Fluorine is more reactive than bromine, so bromine cannot replace fluorine.)

Double Replacement Reaction

• Description:

A reaction in which the ions of two compounds exchange places to form two new compounds. This reaction often produces water, a precipitate, or a gas.

• General Equation:

$$AX + BY \rightarrow AY + BX$$

• Example:

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

• Note:

These reactions typically occur in aqueous solutions, and most involve ionic compounds.

Balancing Chemical Equations and Chemical Calculations

• Balancing Chemical Equations:

- A chemical equation must include equal numbers of atoms for each element on both sides (reactants and products).
- Balanced equations comply with the Law of Conservation of Mass.

• Law of Conservation of Mass:

- States that mass is neither created nor destroyed during a chemical reaction.
- The total mass of reactants equals the total mass of products.

Chemical Calculations

• Definition:

The study of the quantitative relationships between the reactants and the products in a chemical reaction.

• Steps for Performing Chemical Calculations:

- 1. Begin with a balanced chemical equation.
- 2. Calculate the number of moles.
- 3. Convert between mass and moles, or vice versa.

Chemical Coefficient and Mole Ratio

• Coefficient:

In a chemical equation, the coefficient is the number written before the reactant or product, indicating the number of moles involved.

• Example:

$$2Al(s) + 3Br_2(l)
ightarrow 2AlBr_3(s)$$

Mole Ratio:

The ratio of the number of moles of any two substances in a balanced chemical equation.

• Example:

For the reaction $2K(s) + Br_2(l) \rightarrow 2KBr(s)$:

$$\mathrm{Mole\ ratio} = \frac{2\ \mathrm{mol}\ \mathrm{K}}{2\ \mathrm{mol}\ \mathrm{KBr}} = \frac{2\ \mathrm{mol}\ \mathrm{K}}{1\ \mathrm{mol}\ \mathrm{Br}_2}$$

01: Which branch of chemistry studies the types and compositions of substances?

- A: Atomic Chemistry
- B: Biochemistry
- C: Organic Chemistry
- D: Analytical Chemistry

02: Studying bonds, orbital shapes, and electronic structure falls under which branch of chemistry?

- A: Analytical Chemistry
- **B**: Atomic Chemistry
- C: Biochemistry
- D: Organic Chemistry

03: Which branch of chemistry investigates and analyzes decomposition materials in the environment?

- A: Biochemistry
- B: Environmental Chemistry
- C: Industrial Chemistry
- D: Physical Chemistry

04: The type of radiation mostly absorbed by ozone gas is...

- A: Infrared
- B: Ultraviolet
- C: X-rays
- D: Gamma rays

05: Ozone gas (O₃) is found in the atmosphere within a layer called...

- A: Stratosphere
- B: Troposphere
- C: Mesosphere
- D: Thermosphere

C: Wearing safety goggles
D: Wearing contact lenses

06: How many ozone molecules are formed from 18 oxygen atoms? A: 2 B: 3 C: 6 D: 9 07: What is the cause of ozone depletion in the atmosphere? A: Chlorofluorocarbon (CFC) compounds B: Air currents in the stratosphere C: Ultraviolet radiation D: Combination of oxygen gas with its atoms 08: Which of the following is considered the most harmful to the atmosphere? A: Nitrogen B: Chlorofluorocarbons (CFCs) C: Carbon monoxide D: Carbon dioxide 09: The study of CFC compounds and their reactions with ozone gas without direct environmental evidence is considered... A: Theoretical Research B: Practical Research C: Experimental Research D: Applied Research 10: Research conducted to solve a specific problem is called... A: Theoretical Research B: Philosophical Research C: Descriptive Research D: Applied Research 11: Which of the following is NOT a laboratory safety rule? A: Wearing a lab coat B: Wearing gloves

12: Which of the following is NOT classified as matter according to the scientific definition
A: Water
B: Air
C: Heat
D: Soil
13: Which of the following represents a measure of the quantity of matter only?
A: Volume
B: Mass
C: Density
D: Weight
14: Which of the following statements describes matter in the solid state?
A: It has the ability to flow.
B: It can be compressed into a smaller volume.
C: It takes the shape and volume of its container.
D: Its particles are tightly packed together.
15: Which state of matter has an indefinite shape and volume, with its particles far apart?
A: Plasma
B: Gaseous state
C: Solid state
D: Liquid state
16: Which of the following is considered an intensive property?
A: Mass
B: Volume
C: Length
D: Density
17: Which of the following is considered a qualitative property of matter?
A: Volume
B: Speed
C: Length
D: Color

18: Which of the following represents a physical property?

- A: Formation of rust on iron
- B: Burning of a piece of wood
- C: Tarnishing of silver
- D: Electrical conductivity of copper

19: The quantitative property of the answer sheet in your hand is...

- A: Its color
- B: Its dimensions
- C: Its smell
- D: Its texture

20: Which of the following represents a quantitative property?

- A: Salt dissolving in hot water
- B: Solution concentration of 1 mol/L
- C: Sodium being a caustic substance for skin
- D: Clouds containing a certain amount of rainfall

21: Which of the following is considered a chemical property?

- A: Water is colorless.
- B: Sugar decomposes into carbon and water vapor.
- C: Table salt is a solid crystal.
- D: Carbon monoxide gas is released.

22: Which property of table salt represents a chemical property?

- A: Its salty taste
- B: Its white color
- C: Its crystalline structure
- D: It does not react with pure water

23: Two factors determine the state of matter. They are...

- A: Density and mass
- B: Pressure and temperature
- C: Volume and density
- D: Mass and temperature

24: Which of the following is considered a physical change?
A: Digestion of food
B: Rusting of iron
C: Breaking glass
D: Burning wood
25: Which of the following is classified as an energy-releasing physical state change?
A: Sublimation
B: Evaporation
C: Freezing
D: Melting
26: Which process is accompanied by the release of energy?
A: Crystallization
B: Evaporation
C: Sublimation
D: Condensation
27: The temperature at which the vapor pressure of a liquid equals atmospheric pressure is called
A: Melting Point
B: Condensation
C: Sublimation
D: Boiling Point
28: Smelling the scent of solid naphthalene in the air indicates the occurrence of
A: Sublimation
B: Freezing
C: Evaporation
D: Melting

29: Which of the following processes represents sublimation?

- A: $I_2(s) o I_2(g)$
- B: $Br_2(l) o Br_2(s)$
- C: $C_{10}H_8(s)
 ightarrow C_{10}H_8(l)$
- D: $CaCO_3(s) o CaO(s) + CO_2(g)$

30: Which substance increases in volume when transitioning from the liquid state to the solid state?

- A: CO_2
- B: HCl
- C: NH_3
- D: H_2O

31: The deposition process is the reverse of which process?

- A: Sublimation
- B: Melting
- C: Condensation
- D: Evaporation

32: What type of change occurs in the composition and properties of a substance, resulting in the formation of new materials?

- A: Physical change
- **B**: Physical property
- C: Chemical change
- D: Freezing

33: Which of the following represents a chemical change?

- A: Melting of ice
- B: Condensation of water vapor
- C: Burning of a candle wick
- D: Evaporation of mercury

34: Which of the following is NOT considered a compound?

- A: H_2SO_4
- B: NaCl
- C: Br_2
- D: H_2O

35: A substance with a fixed composition made up of multiple elements is called...

- A: Homogeneous mixture
- B: Heterogeneous mixture
- C: Compound
- D: Isotope

36: Which of the following is considered a compound?

- A: Coal
- B: Ozone
- C: Rust (Iron Oxide)
- D: Mercury

37: Table salt is classified as...

- A: An element
- B: A solution
- C: A mixture
- D: A compound

38: A characteristic that distinguishes a compound is that its components...

- A: Combine in any ratio
- B: Can be separated by filtration
- C: Undergo a chemical reaction
- D: Retain their fundamental properties

39: The ratio of the mass of sodium Na to the mass of chlorine Cl in table salt NaCl represents...

- A: Law of conservation of mass
- B: Law of conservation of energy
- C: Law of definite proportions
- D: Law of multiple proportions

40: The mass of oxygen in H_2O_2 compared to its mass in H_2O represents the law of...

- A: Conservation of energy
- B: Conservation of mass
- C: Multiple proportions
- D: Definite proportions

41: The process in which the arrangement of atoms in a substance changes to produce one or more new substances is called...

- A: Chemical equilibrium
- B: Reaction rate
- C: Chemical reaction
- D: Dissolution process

42: The type of reaction that produces a single substance is...

- A: Replacement
- **B**: Decomposition
- C: Synthesis
- D: Analysis

43: Which of the following represents a synthesis reaction?

A:
$$2NaF(aq) \rightarrow 2Na(s) + F_2(g)$$

$$\operatorname{\mathsf{B}} : \operatorname{Mg}(s) + \operatorname{Cl}_2(g) \to \operatorname{MgCl}_2(s)$$

$$\text{C: } 2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$$

D:
$$MgCl_2(s) \rightarrow Mg(s) + Cl_2(g)$$

44: What type of reaction is $Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$?

- A: Synthesis
- B: Simple Replacement
- C: Double Replacement
- D: Decomposition

45: Which equation represents a combustion reaction?

A:
$$\mathrm{H}_2(\mathrm{g}) + \mathrm{Cl}_2(\mathrm{g}) o 2\mathrm{HCl}(\mathrm{aq})$$

$$\operatorname{\mathsf{B}}: \operatorname{Mg}(s) + 2\operatorname{HCl}(\operatorname{aq}) \to \operatorname{MgCl}_2(s) + \operatorname{H}_2(g)$$

$$\mathsf{C}: \mathrm{KOH}(\mathrm{aq}) + \mathrm{HNO}_3(\mathrm{aq}) \to \mathrm{KNO}_3(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l})$$

D:
$$\mathrm{CH_4}(g) + 2\mathrm{O}_2(g) \to \mathrm{CO}_2(g) + 2\mathrm{H}_2\mathrm{O}(g)$$

46: The reaction of methane gas with oxygen gas is classified as..

- A: Formation
- **B**: Combustion
- C: Decomposition
- D: Single displacement

47: A chemical reaction where a single substance produces two or more substances is classified as..

- A: Displacement
- **B**: Combustion
- C: Decomposition
- D: Addition

48: What type of reaction occurs when an electric current passes through molten potassium bromide, resulting in the production of bromine and potassium?

- A: Synthesis
- **B**: Decomposition
- C: Combustion
- D: Displacement

49: What type of chemical reaction is represented by the equation A + BX → AX + B?

- A: Single displacement
- B: Double displacement
- C: Decomposition
- D: Synthesis

50: What type of reaction is represented by the equation $Ni(s) + CuCl_2(aq) \rightarrow Cu(s) + NiCl_2(aq)$?

- A: Double displacement
- **B**: Decomposition
- C: Combustion
- D: Single displacement

51: Which of the following is classified as a displacement reaction?

A:
$$2AI(s) + 3S(s) \rightarrow AI_2S_3(s)$$

B:
$$2\text{Li}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{LiOH}(aq) + \text{H}_2(g)$$

C:
$$H_2O(I) + N_2O_5(g) \rightarrow 2HNO_3(aq)$$

D:
$$4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g)$$

52: Complete the reaction: $Zn(s) + NiCl_2(aq) \rightarrow ?$

A:
$$ZnCl_2(aq) + Ni(s)$$

B:
$$ZnCl_2(aq) + 2Ni(s)$$

C:
$$2ZnCl_2(aq) + Ni(s)$$

D: NR (No Reaction)

53: Complete the equation: $F_2(g) + 2NaBr(aq) \rightarrow 2NaF(aq) + ?$

- A: F₂(g)
- B: Na(s)
- C: Br₂(l)
- D: Br(l)

54: Why does the reaction $Br_2(I) + NaF(aq) \rightarrow NR$ stop?

- A: The reaction loses heat.
- B: Bromine is a molecular covalent compound.
- C: Fluorine is more reactive than bromine.
- D: The reactants are heterogeneous.

55: What type of reaction is represented by AX + BY → AY + BX?

- A: Decomposition
- B: Double displacement
- C: Synthesis
- D: Single displacement

56: What type of reactions occur frequently in aqueous solutions?

- A: Single displacement
- B: Double displacement
- C: Decomposition
- D: Synthesis

57: What is the type of the following reaction?

$$2HI(aq) + (NH4)2S(aq) \rightarrow H2S(g) + 2NH4I(aq)$$

- A: Synthesis
- **B**: Decomposition
- C: Combustion
- D: Displacement

58: Balanced chemical equations satisfy the law of..

- A: Conservation of Energy
- B: Conservation of Mass
- C: Conservation of Charge
- D: Constant Proportions

59: If 12.2 g of X reacts with 78.9 g of Y, producing 91.1 g of XY, this represents the law of..

- A: Constant Proportions
- **B**: Conservation of Mass
- C: Multiple Proportions
- D: Conservation of Energy

60: When 20 g of substance X reacts with substance Y, producing 30 g of XY, what is the mass of Y that reacted (in grams)?

- A: 10
- B: 20
- C: 30
- D: 50

61: The study of the relationship between the reactants and the products in a chemical reaction is called..

- A: Chemical calculations
- B: Chemical equations
- C: Molar ratios
- D: Limiting reactant

62: What is the compound x produced in the following balanced equation?

$$\mathrm{Ag(s)} + 2\mathrm{HNO_3(aq)}
ightarrow x + \mathrm{NO_2(g)} + \mathrm{H_2O(l)}$$

- $A: Ag_2O(s)$
- B: $AgNO_3(aq)$
- C: $AgNO_2(s)$
- D: AgO(s)

63: Represent \boldsymbol{x} and \boldsymbol{y} in the balanced equation below:

$$\mathrm{CH_4} + x o \mathrm{CO_2} + y$$

- A: O_2, H_2O
- B: $O_2, 2H_2O$
- $\mathsf{C} : 2O_2, H_2O$
- D: $2O_2, 2H_2O$

64: Which of the following represents the coefficient x of hydrogen in the equation below?

$$\mathrm{N}_2 + x\mathrm{H}_2
ightarrow 2\mathrm{NH}_3$$

- A: 1
- B: 2
- $\mathsf{C}:3$
- D:6

